[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341320
G.f. A(x) satisfies: A(x) = P(x)/Q(x) where P(x) = Sum_{n>=0} (n+1)*x^n*A(x)^(3*n)/(1 - x*A(x)^(n+1))^2 and Q(x) = Sum_{n>=0} (n+1)*x^n*A(x)^(2*n)/(1 - x*A(x)^(n+2)).
0
1, 1, 3, 16, 103, 724, 5381, 41603, 331251, 2698123, 22377963, 188354172, 1604864527, 13815855427, 119989316373, 1050060125737, 9250659021067, 81973487875776, 730180058911437, 6534340375318637, 58719824201731279, 529668859086486941
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (n+1) * x^n * A(x)^(3*n) / (1 - x*A(x)^(n+1))^2,
Q(x) = Sum_{n>=0} (n+1) * x^n * A(x)^(2*n) / (1 - x*A(x)^(n+2)).
(2) A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (n+1) * x^n * A(x)^n / (1 - x*A(x)^(n+3))^2,
Q(x) = Sum_{n>=0} x^n * A(x)^(2*n) / (1 - x*A(x)^(n+2))^2.
(3) A(x) = (1/x) * Series_Reversion(x/F(x)), where F(x) is the g.f. of A340942.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 103*x^4 + 724*x^5 + 5381*x^6 + 41603*x^7 + 331251*x^8 + 2698123*x^9 + 22377963*x^10 + 188354172*x^11 + ...
such that A(x) = P(x)/Q(x) where
P(x) = 1/(1 - x*A(x))^2 + 2*x*A(x)^3/(1 - x*A(x)^2)^2 + 3*x^2*A(x)^6/(1 - x*A(x)^3)^2 + 4*x^3*A(x)^9/(1 - x*A(x)^4)^2 + 5*x^4*A(x)^12/(1 - x*A(x)^5)^2 + ...
Q(x) = 1/(1 - x*A(x)^2) + 2*x*A(x)^2/(1 - x*A(x)^3) + 3*x^2*A(x)^4/(1 - x*A(x)^4) + 4*x^3*A(x)^6(1 - x*A(x)^5) + 5*x^4*A(x)^8/(1 - x*A(x)^6) + ...
equivalently,
P(x) = 1/(1 - x*A(x)^3)^2 + 2*x*A(x)/(1 - x*A(x)^4)^2 + 3*x^2*A(x)^2/(1 - x*A(x)^5)^2 + 4*x^3*A(x)^3/(1 - x*A(x)^6)^2 + 5*x^4*A(x)^4/(1 - x*A(x)^7)^2 + ...
Q(x) = 1/(1 - x*A(x)^2)^2 + x*A(x)^2/(1 - x*A(x)^3)^2 + x^2*A(x)^4/(1 - x*A(x)^4)^2 + x^3*A(x)^6/(1 - x*A(x)^5)^2 + x^4*A(x)^8/(1 - x*A(x)^6)^2 + ...
explicitly,
P(x) = 1 + 4*x + 18*x^2 + 94*x^3 + 565*x^4 + 3770*x^5 + 27031*x^6 + 203724*x^7 + 1591617*x^8 + 12775324*x^9 + 104723264*x^10 + 873036602*x^11 + ...
Q(x) = 1 + 3*x + 12*x^2 + 57*x^3 + 321*x^4 + 2053*x^5 + 14314*x^6 + 105810*x^7 + 815054*x^8 + 6472124*x^9 + 52606288*x^10 + 435562712*x^11 + ...
RELATED SERIES.
A(x) = F(x*A(x)) where F(x) = A(x/F(x)) is the g.f. of A340942:
F(x) = 1 + x + 2*x^2 + 9*x^3 + 46*x^4 + 253*x^5 + 1467*x^6 + 8842*x^7 + 54878*x^8 + 348489*x^9 + 2254007*x^10 + ... + A340942(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=1+x+x*O(x^n), P=1, Q=1);
for(i=0, n,
P = sum(m=0, n, (m+1)*x^m*A^(3*m)/(1 - x*A^(m+1) + x*O(x^n))^2 );
Q = sum(m=0, n, (m+1)*x^m*A^(2*m)/(1 - x*A^(m+2) + x*O(x^n)) );
A = P/Q); polcoeff(H=A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1+x+x*O(x^n), P=1, Q=1);
for(i=0, n,
P = sum(m=0, n, (m+1)*x^m*A^m/(1 - x*A^(m+3) + x*O(x^n))^2 );
Q = sum(m=0, n, x^m*A^(2*m)/(1 - x*A^(m+2) + x*O(x^n))^2 );
A = P/Q); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A340942.
Sequence in context: A000949 A091637 A278429 * A365752 A207434 A074542
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2021
STATUS
approved