[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278429
a(n) = Sum_{k=0..n} binomial(k+n-2,k)*binomial(2*n+1,k+n+1).
1
1, 3, 16, 102, 699, 4973, 36194, 267480, 1998565, 15057255, 114179652, 870351386, 6662847871, 51189449457, 394476780694, 3047878296556, 23602623675273, 183142111511819, 1423578146798168, 11082963785614926, 86405502413568259
OFFSET
0,2
LINKS
FORMULA
G.f.: x*(1-2*x*C(2*x))/sqrt(1-8*x)/(x*C(2*x))/(1-x*C(2*x))^3, where C(x) is g.f. of Catalan numbers.
a(n) = binomial(2n+1, n+1) * 2F1(n-1, -n; n+2; -1). - Jean-François Alcover, Nov 22 2016
a(n) ~ 2^(3*n+4)/(27*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 22 2016
D-finite with recurrence n*a(n) +(-5*n+2)*a(n-1) +6*(n-14)*a(n-2) +4*(-53*n+240)*a(n-3) +112*(-2*n+5)*a(n-4)=0. - R. J. Mathar, Feb 08 2021
MATHEMATICA
Table[Binomial[2*n+1, n+1]*Hypergeometric2F1[n-1, -n, n+2, -1], {n, 0, 20}] (* Jean-François Alcover, Nov 22 2016 *)
PROG
(Maxima)
C(x):=(1-sqrt(1-4*x))/(2*x);
taylor(x/sqrt(1-8*x)/(x*C(2*x))/(1-x*C(2*x))^3*(1-2*x*C(2*x)), x, 0, 10);
(Magma) m:=30; [&+[Binomial(k+n-2, k)*Binomial(2*n+1, k+n+1): k in [0..m]]: n in [0..30]]; // Vincenzo Librandi, Nov 22 2016
(PARI) a(n) = sum(k=0, n, binomial(k+n-2, k)*binomial(2*n+1, k+n+1)); \\ Indranil Ghosh, Mar 03 2017
CROSSREFS
Cf. A000108.
Sequence in context: A009007 A000949 A091637 * A341320 A365752 A207434
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 22 2016
STATUS
approved