[go: up one dir, main page]

login
A349372
Dirichlet convolution of Kimberling's paraphrases (A003602) with tau (number of divisors, A000005).
7
1, 3, 4, 6, 5, 12, 6, 10, 12, 15, 8, 24, 9, 18, 22, 15, 11, 36, 12, 30, 27, 24, 14, 40, 22, 27, 34, 36, 17, 66, 18, 21, 37, 33, 36, 72, 21, 36, 42, 50, 23, 81, 24, 48, 72, 42, 26, 60, 36, 66, 52, 54, 29, 102, 50, 60, 57, 51, 32, 132, 33, 54, 90, 28, 57, 111, 36, 66, 67, 108, 38, 120, 39, 63, 104, 72, 63, 126, 42, 75
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} A003602(n/d) * A000005(d).
MATHEMATICA
k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
PROG
(PARI)
A003602(n) = (1+(n>>valuation(n, 2)))/2;
A349372(n) = sumdiv(n, d, A003602(n/d)*numdiv(d));
CROSSREFS
Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349373, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.
Cf. also A349392.
Sequence in context: A332361 A360655 A058838 * A001177 A337878 A053991
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved