[go: up one dir, main page]

login
A347021
Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(1/4).
4
1, 1, 4, 32, 364, 5444, 100520, 2210760, 56406240, 1637877600, 53327583360, 1924096475520, 76198487927040, 3285955396558080, 153273199794071040, 7689131281851770880, 412809183978447306240, 23616192920003184176640, 1434201753814306170808320
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * A007696(k).
a(n) ~ n! * exp(1/16) / (Gamma(1/4) * 2^(1/2) * n^(3/4) * (exp(1/4) - 1)^(n + 1/4)). - Vaclav Kotesovec, Aug 14 2021
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (4 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 11 2023
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(1 - 4 Log[1 + x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 11 2021
STATUS
approved