OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A007559(k+1) * Stirling2(n,k).
a(n) ~ 3 * sqrt(Pi) * n^(n + 5/6) / (2^(13/6) * Gamma(1/3) * log(4/3)^(n + 4/3) * exp(n)). - Vaclav Kotesovec, Sep 06 2024
MATHEMATICA
nmax=17; CoefficientList[Series[1 / (4 - 3 * Exp[x])^(4/3), {x, 0, nmax}], x]*Range[0, nmax]! (* Stefano Spezia, Sep 03 2024 *)
PROG
(PARI) a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k+1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2024
STATUS
approved