OFFSET
1,1
COMMENTS
The corresponding primes are near-repunit primes, cf. A105992.
In base 10, R(k) + 2*10^floor(k/2-1) has ceiling(k/2) digits 1, one digit 3 and again floor(k/2-1) digits 1: for even as well as odd k, there is a digit 3 just left of the middle of the repunit of length k.
No term can be equivalent to 1 (mod 3). - Chai Wah Wu, Feb 07 2020
LINKS
Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
EXAMPLE
For k = 2, R(2) + 2*10^(1-1) = 13 is prime.
For k = 3, R(3) + 2*10^(1-1) = 113 is prime.
For k = 5, R(5) + 2*10^(2-1) = 11131 is prime.
For k = 8, R(8) + 2*10^(4-1) = 11113111 is prime.
PROG
(PARI) for(n=2, 999, isprime(p=10^n\9+2*10^(n\2-1))&&print1(n", "))
CROSSREFS
KEYWORD
nonn,base,hard,more
AUTHOR
M. F. Hasler, Jan 30 2020
EXTENSIONS
a(13)-a(16) from Daniel Suteu, Feb 01 2020
a(17) from Michael S. Branicky, Feb 03 2023
STATUS
approved