# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a331864 Showing 1-1 of 1 %I A331864 #20 Feb 03 2023 14:36:11 %S A331864 2,3,5,8,9,39,78,81,155,249,387,395,510,711,1173,1751,10245 %N A331864 Numbers k such that R(k) + 2*10^floor(k/2-1) is prime, where R(k) = (10^k-1)/9 (repunit: A002275). %C A331864 The corresponding primes are near-repunit primes, cf. A105992. %C A331864 In base 10, R(k) + 2*10^floor(k/2-1) has ceiling(k/2) digits 1, one digit 3 and again floor(k/2-1) digits 1: for even as well as odd k, there is a digit 3 just left of the middle of the repunit of length k. %C A331864 No term can be equivalent to 1 (mod 3). - _Chai Wah Wu_, Feb 07 2020 %H A331864 Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015). %e A331864 For k = 2, R(2) + 2*10^(1-1) = 13 is prime. %e A331864 For k = 3, R(3) + 2*10^(1-1) = 113 is prime. %e A331864 For k = 5, R(5) + 2*10^(2-1) = 11131 is prime. %e A331864 For k = 8, R(8) + 2*10^(4-1) = 11113111 is prime. %o A331864 (PARI) for(n=2,999,isprime(p=10^n\9+2*10^(n\2-1))&&print1(n",")) %Y A331864 Cf. A105992 (near-repunit primes), A002275 (repunits), A011557 (powers of 10). %Y A331864 Cf. A331865 (variant with floor(n/2) instead of floor(n/2-1)), A331860, A331863 (variants with digit 2 resp. 0 instead of digit 3). %K A331864 nonn,base,hard,more %O A331864 1,1 %A A331864 _M. F. Hasler_, Jan 30 2020 %E A331864 a(13)-a(16) from _Daniel Suteu_, Feb 01 2020 %E A331864 a(17) from _Michael S. Branicky_, Feb 03 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE