[go: up one dir, main page]

login
A330117
Beatty sequence for 1+x, where 1/(1+x) + 1/(1+x+x^2) = 1.
2
1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 56, 57, 59, 61, 63, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110, 112
OFFSET
1,2
COMMENTS
Let x be the positive solution of 1/(1+x) + 1/(1+x+x^2) = 1. Then (floor(n*(1+x)) and (floor(n*(1+x+x^2))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
FORMULA
a(n) = floor(n (1+x))), where x = 0.7548776662... is the constant in A075778.
MATHEMATICA
r = x /. FindRoot[1/(1 + x) + 1/(1 + x + x^2) == 1, {x, 1, 2}, WorkingPrecision -> 200]
RealDigits[r] (* A075778 *)
Table[Floor[n*(1 + r)], {n, 1, 250}] (* A330117 *)
Table[Floor[n*(1 + r + r^2)], {n, 1, 250}] (* A330118 *)
Plot[1/(1 + x) + 1/(1 + x + x^2) - 1, {x, 0, 2}]
CROSSREFS
Cf. A075778, A329825, A330118 (complement).
Sequence in context: A144077 A184626 A047392 * A292648 A187330 A059546
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 04 2020
STATUS
approved