OFFSET
0,2
COMMENTS
An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. See A339658 for the Heinz numbers, and A339655 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the unordered prime signature of n is loop-graphical.
LINKS
Eric Weisstein's World of Mathematics, Graphical partition.
EXAMPLE
The a(0) = 1 through a(4) = 15 partitions:
() (2) (2,2) (3,3) (3,3,2)
(1,1) (3,1) (2,2,2) (4,2,2)
(2,1,1) (3,2,1) (4,3,1)
(1,1,1,1) (4,1,1) (2,2,2,2)
(2,2,1,1) (3,2,2,1)
(3,1,1,1) (3,3,1,1)
(2,1,1,1,1) (4,2,1,1)
(1,1,1,1,1,1) (5,1,1,1)
(2,2,2,1,1)
(3,2,1,1,1)
(4,1,1,1,1)
(2,2,1,1,1,1)
(3,1,1,1,1,1)
(2,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1)
For example, there are four possible loop-graphs with degrees y = (2,2,1,1), namely
{{1,1},{2,2},{3,4}}
{{1,1},{2,3},{2,4}}
{{1,2},{1,3},{2,4}}
{{1,2},{1,4},{2,3}}
{{1,3},{1,4},{2,2}},
so y is counted under a(3). On the other hand, there are two possible loop-multigraphs with degrees z = (4,2), namely
{{1,1},{1,1},{2,2}}
{{1,1},{1,2},{1,2}},
but neither of these is a loop-graph, so z is not counted under a(3).
MATHEMATICA
spsbin[{}]:={{}}; spsbin[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsbin[Complement[set, s]]]/@Cases[Subsets[set], {i, _}];
mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@spsbin[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n], Select[mpsbin[#], UnsameQ@@#&]!={}&]], {n, 0, 5}]
CROSSREFS
A339658 ranks these partitions.
A062740 counts labeled connected loop-graphs.
A320461 ranks normal loop-graphs.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A322661 counts covering loop-graphs.
The following count vertex-degree partitions and give their Heinz numbers:
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
The following count partitions of even length and give their Heinz numbers:
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 14 2020
EXTENSIONS
a(8)-a(25) from Andrew Howroyd, Jan 10 2024
STATUS
approved