[go: up one dir, main page]

login
A337821
For n >= 0, a(4n+1) = 0, a(4n+3) = a(2n+1) + 1, a(2n+2) = a(n+1).
3
0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 3, 4, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 2, 3, 1, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 0, 4, 5, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 2, 3, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 3, 4, 1
OFFSET
1,7
COMMENTS
This sequence is the ruler sequence A007814 interleaved with this sequence; specifically, the odd bisection is A007814, the even bisection is the sequence itself.
The 3-adic valuation of the Doudna sequence (A005940).
The 2-adic valuation of Kimberling's paraphrases (A003602).
FORMULA
a(2*n) = a(n).
a(2*n+1) = A007814(n+1).
a(n) = A007949(A005940(n)).
a(n) = A007814(A003602(n)) = A007814((A000265(n)+1) / 2) = A089309(n) - 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Sep 13 2024
EXAMPLE
Start of table showing the interleaving with ruler sequence, A007814:
n a(n) A007814 a(n/2)
((n+1)/2)
1 0 0
2 0 0
3 1 1
4 0 0
5 0 0
6 1 1
7 2 2
8 0 0
9 0 0
10 0 0
11 1 1
12 1 1
13 0 0
14 2 2
15 3 3
16 0 0
17 0 0
18 0 0
19 1 1
20 0 0
21 0 0
22 1 1
23 2 2
24 1 1
MATHEMATICA
a[n_] := IntegerExponent[(n/2^IntegerExponent[n, 2] + 1)/2, 2]; Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
PROG
(PARI) a(n) = valuation(n>>valuation(n, 2)+1, 2) - 1; \\ Kevin Ryde, Apr 06 2024
CROSSREFS
Odd bisection: A007814.
A000265, A003602, A005940, A007949 are used in a formula defining this sequence.
Positions of zeros: A091072.
Sequences with similar interleaving: A089309, A014577, A025480, A034947, A038189, A082392, A099545, A181363, A274139.
Sequence in context: A304095 A276675 A236389 * A143078 A106405 A228601
KEYWORD
nonn,easy
AUTHOR
Peter Munn, Sep 23 2020
STATUS
approved