# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a337821 Showing 1-1 of 1 %I A337821 #24 Sep 13 2024 06:54:05 %S A337821 0,0,1,0,0,1,2,0,0,0,1,1,0,2,3,0,0,0,1,0,0,1,2,1,0,0,1,2,0,3,4,0,0,0, %T A337821 1,0,0,1,2,0,0,0,1,1,0,2,3,1,0,0,1,0,0,1,2,2,0,0,1,3,0,4,5,0,0,0,1,0, %U A337821 0,1,2,0,0,0,1,1,0,2,3,0,0,0,1,0,0,1,2,1,0,0,1,2,0,3,4,1 %N A337821 For n >= 0, a(4n+1) = 0, a(4n+3) = a(2n+1) + 1, a(2n+2) = a(n+1). %C A337821 This sequence is the ruler sequence A007814 interleaved with this sequence; specifically, the odd bisection is A007814, the even bisection is the sequence itself. %C A337821 The 3-adic valuation of the Doudna sequence (A005940). %C A337821 The 2-adic valuation of Kimberling's paraphrases (A003602). %F A337821 a(2*n) = a(n). %F A337821 a(2*n+1) = A007814(n+1). %F A337821 a(n) = A007949(A005940(n)). %F A337821 a(n) = A007814(A003602(n)) = A007814((A000265(n)+1) / 2) = A089309(n) - 1. %F A337821 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - _Amiram Eldar_, Sep 13 2024 %e A337821 Start of table showing the interleaving with ruler sequence, A007814: %e A337821 n a(n) A007814 a(n/2) %e A337821 ((n+1)/2) %e A337821 1 0 0 %e A337821 2 0 0 %e A337821 3 1 1 %e A337821 4 0 0 %e A337821 5 0 0 %e A337821 6 1 1 %e A337821 7 2 2 %e A337821 8 0 0 %e A337821 9 0 0 %e A337821 10 0 0 %e A337821 11 1 1 %e A337821 12 1 1 %e A337821 13 0 0 %e A337821 14 2 2 %e A337821 15 3 3 %e A337821 16 0 0 %e A337821 17 0 0 %e A337821 18 0 0 %e A337821 19 1 1 %e A337821 20 0 0 %e A337821 21 0 0 %e A337821 22 1 1 %e A337821 23 2 2 %e A337821 24 1 1 %t A337821 a[n_] := IntegerExponent[(n/2^IntegerExponent[n, 2] + 1)/2, 2]; Array[a, 100] (* _Amiram Eldar_, Sep 30 2020 *) %o A337821 (PARI) a(n) = valuation(n>>valuation(n,2)+1, 2) - 1; \\ _Kevin Ryde_, Apr 06 2024 %Y A337821 Odd bisection: A007814. %Y A337821 A000265, A003602, A005940, A007949 are used in a formula defining this sequence. %Y A337821 Positions of zeros: A091072. %Y A337821 Sequences with similar interleaving: A089309, A014577, A025480, A034947, A038189, A082392, A099545, A181363, A274139. %K A337821 nonn,easy %O A337821 1,7 %A A337821 _Peter Munn_, Sep 23 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE