[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322932
Digits of the 8-adic integer 5^(1/3).
3
5, 3, 1, 7, 4, 4, 0, 2, 3, 3, 6, 0, 6, 7, 6, 7, 5, 4, 0, 5, 3, 2, 2, 2, 4, 6, 2, 6, 1, 0, 6, 2, 7, 4, 3, 3, 7, 4, 3, 7, 5, 6, 4, 5, 1, 3, 3, 0, 1, 7, 4, 4, 7, 0, 7, 5, 3, 2, 1, 5, 1, 5, 6, 1, 1, 0, 1, 6, 1, 4, 7, 4, 0, 1, 1, 5, 6, 0, 6, 3, 5, 0, 3, 4, 0, 3, 5, 1, 3, 5, 3, 4, 0, 3, 4, 7, 4, 2, 6, 0
OFFSET
0,1
LINKS
Wikipedia, Hensel's Lemma.
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 5, b(n) = b(n-1) + 5 * (b(n-1)^3 - 5) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - Seiichi Manyama, Aug 14 2019
EXAMPLE
20447135^3 == 5 (mod 8^8) in octal.
PROG
(PARI) N=100; Vecrev(digits(lift((5+O(2^(3*N)))^(1/3)), 8), N) \\ Seiichi Manyama, Aug 14 2019
(Ruby)
def A322932(n)
ary = [5]
a = 5
n.times{|i|
b = (a + 5 * (a ** 3 - 5)) % (8 ** (i + 2))
ary << (b - a) / (8 ** (i + 1))
a = b
}
ary
end
p A322932(100) # Seiichi Manyama, Aug 14 2019
CROSSREFS
Sequence in context: A179975 A019926 A249538 * A259619 A111498 A092140
KEYWORD
nonn,base,easy
AUTHOR
Patrick A. Thomas, Dec 31 2018
STATUS
approved