[go: up one dir, main page]

login
A321292
Smallest positive number for which the 5th power cannot be written as sum of distinct 5th powers of any subset of previous terms.
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 30, 37, 43, 44, 55, 57, 64, 77, 82, 90, 97, 112, 116, 119, 154, 156, 178, 202, 227, 269, 309, 335, 371, 397, 442, 516, 604, 643, 722, 774, 815, 1000, 1115, 1308, 1503
OFFSET
1,2
COMMENTS
a(n)^5 forms a sum-free sequence.
LINKS
EXAMPLE
The smallest number > 0 that is not in the sequence is 12, because
12^5 = 4^5 + 5^5 + 6^5 + 7^5 + 9^5 + 11^5.
PROG
(Python)
def findSum(nopt, tgt, a, smax, pwr):
if nopt==0:
return [] if tgt==0 else None
if tgt<0 or tgt>smax[nopt-1]:
return None
rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)
if rv!=None:
rv.append(a[nopt-1])
else:
rv=findSum(nopt-1, tgt, a, smax, pwr)
return rv
def A321292(n):
POWER=5 ; x=0 ; a=[] ; smax=[] ; sumpwr=0
while len(a)<n:
while True:
x+=1
lst=findSum(len(a), x**POWER, a, smax, POWER)
if lst==None:
break
rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst])
print(" %d^%d = %s"%(x, POWER, rhs))
a.append(x) ; sumpwr+=x**POWER
print("a(%d) = %d"%(len(a), x))
smax.append(sumpwr)
return a[-1]
CROSSREFS
Other powers: A321266 (2), A321290 (3), A321291 (4), A321293 (6).
Sequence in context: A035332 A318536 A048991 * A131881 A364728 A053460
KEYWORD
nonn
AUTHOR
Bert Dobbelaere, Nov 02 2018
STATUS
approved