[go: up one dir, main page]

login
A320001
Number of proper divisors of n of the form 6*k + 1.
7
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2
OFFSET
1,14
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
a(n) = A279060(n) - [+1 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320005(n).
a(n) = A007814(A319991(n)).
G.f.: Sum_{k>=1} x^(12*k-10) / (1 - x^(6*k-5)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (2 - gamma)/6 = 0.519597..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
PROG
(PARI) A320001(n) = if(!n, n, sumdiv(n, d, (d<n)*(1==(d%6))));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Oct 03 2018
STATUS
approved