OFFSET
1,3
COMMENTS
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.
LINKS
Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003.
EXAMPLE
The sequence of terms together with their binary expansions begins:
0:
1: 1
2: 10
7: 111
11: 1011
15: 1111
18: 10010
31: 11111
63: 111111
75: 1001011
127: 1111111
255: 11111111
511: 111111111
1023: 1111111111
1234: 10011010010
2047: 11111111111
4095: 111111111111
8191: 1111111111111
9638: 10010110100110
16383: 11111111111111
32767: 111111111111111
65535: 1111111111111111
MATHEMATICA
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&, q, Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&, q, Length[#]>0&]]-1;
das=Table[If[n==0, 0, runsres[IntegerDigits[n, 2]]-degdep[IntegerDigits[n, 2]]], {n, 0, 1000000}];
Table[Position[das, i][[1, 1]]-1, {i, First/@Gather[das]}]
CROSSREFS
Sorted positions of first appearances in A329867.
Compositions with runs-resistance equal to cuts-resistance are A329864.
Runs-resistance of binary expansion is A318928.
Cuts-resistance of binary expansion is A319416.
Compositions counted by runs-resistance are A329744.
Compositions counted by cuts-resistance are A329861.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 23 2019
STATUS
approved