OFFSET
0,1
COMMENTS
Also positive integers whose binary expansion has cuts-resistance > 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. - Gus Wiseman, Nov 27 2019
FORMULA
EXAMPLE
From Gus Wiseman, Nov 27 2019: (Start)
The sequence of terms together with their binary expansions begins:
3: 11
4: 100
6: 110
7: 111
8: 1000
9: 1001
11: 1011
12: 1100
13: 1101
14: 1110
15: 1111
16: 10000
17: 10001
18: 10010
(End)
MATHEMATICA
Select[Range[100], MatchQ[IntegerDigits[#, 2], {___, x_, x_, ___}]&] (* Gus Wiseman, Nov 27 2019 *)
Select[Range[80], SequenceCount[IntegerDigits[#, 2], {x_, x_}]>0&] (* or *) Complement[Range[85], Table[FromDigits[PadRight[{}, n, {1, 0}], 2], {n, 7}]] (* Harvey P. Dale, Jul 31 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 28 2005
STATUS
approved