[go: up one dir, main page]

login
A328547
Number of 3-regular bipartitions of n.
5
1, 2, 5, 8, 16, 26, 44, 68, 108, 162, 245, 356, 521, 740, 1053, 1468, 2045, 2804, 3836, 5184, 6988, 9326, 12409, 16376, 21546, 28154, 36674, 47492, 61317, 78764, 100880, 128628, 163553, 207134, 261630, 329288, 413395, 517316, 645803, 803844, 998282
OFFSET
0,2
REFERENCES
Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
FORMULA
a(n) ~ exp(Pi*sqrt(8*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2024
MAPLE
f:=(k, M) -> mul(1-q^(k*j), j=1..M);
LRBP := (L, M) -> (f(L, M)/f(1, M))^2;
S := L -> seriestolist(series(LRBP(L, 80), q, 60));
S(3);
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1 + x^j + x^(2*j), {j, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2024 *)
CROSSREFS
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Cf. A000726.
Sequence in context: A171238 A096541 A226015 * A137685 A169826 A093065
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2019
STATUS
approved