[go: up one dir, main page]

login
A326729
a(0) = 0; for n >= 1, a(n) is the result of inverting s-th bit (from right) in n, where s is the number of ones in the binary representation of n.
4
0, 0, 3, 1, 5, 7, 4, 3, 9, 11, 8, 15, 14, 9, 10, 7, 17, 19, 16, 23, 22, 17, 18, 31, 26, 29, 30, 19, 24, 21, 22, 15, 33, 35, 32, 39, 38, 33, 34, 47, 42, 45, 46, 35, 40, 37, 38, 63, 50, 53, 54, 59, 48, 61, 62, 39, 60, 49, 50, 43, 52, 45, 46, 31, 65, 67, 64, 71, 70, 65, 66, 79, 74, 77, 78, 67, 72, 69, 70, 95, 82, 85, 86, 91, 80, 93, 94, 71, 92, 81, 82, 75, 84, 77, 78, 127, 98, 101, 102, 107, 96
OFFSET
0,3
COMMENTS
Iterations of a(n) always reach 0 (cf. A326730), see Problem 5 of IMO 2019.
LINKS
FORMULA
For n>=1, a(n) = n XOR 2^(A000120(n)-1).
From Robert Israel, Oct 01 2020: (Start)
a(2*n+1) = 2*a(n).
a(2*n + 2^k) = 2*a(n)+2^k if 2^k > 2*n. (End)
MAPLE
f:= proc(n) local s;
s:= convert(convert(n, base, 2), `+`);
Bits:-Xor(n, 2^(s-1))
end proc:
f(0):= 0:
map(f, [$0..100]); # Robert Israel, Oct 01 2020
PROG
(PARI) A326729(n) = if(n==0, return(0)); bitxor(n, 2^(hammingweight(n)-1));
CROSSREFS
KEYWORD
base,nonn,look
AUTHOR
Max Alekseyev, Jul 22 2019
STATUS
approved