OFFSET
2,1
COMMENTS
a(13) is (probably) 13^32020*8+183, it has 35670 digits, a(14) = 14^85*4+65, it has 99 digits, a(15) = (15^106*66-619)/7, it has 126 digits, a(16) = 16^3544*9+145, it has 4269 digits.
a(17) is the smallest prime of the form (4105*17^k-9)/16 if it exists, otherwise (probably) (73*17^111333-9)/16 (136991 digits), a(18) = 18^31*304+1 (42 digits).
Other known terms: a(20) = (20^449*16-2809)/19 (585 digits), a(22) = 22^763*20+7041 (1026 digits), a(23) is (probably) (23^800873*106-7)/11 (1090573 digits), a(24) = (24^99*512-121)/23 (138 digits), a(30) = 30^1023*12+1 (1513 digits), a(42) = (42^487*27-1093)/41 (791 digits).
a(19) is the smallest prime of the form (15964*19^k-1)/3 if it exists, otherwise (probably) (904*19^110984-1)/3 (141924 digits), a(21) is the smallest prime of the form 16*21^k+335 if it exists, otherwise (probably) (51*21^479149-1243)/4 (633542 digits).
LINKS
Richard N. Smith, Table of n, a(n) for n = 2..16
Curtis Bright, Raymond Devillers, and Jeffrey Shallit, Minimal Elements for the Prime Numbers, preprint, 2014.
Curtis Bright, Raymond Devillers, and Jeffrey Shallit, Minimal Elements for the Prime Numbers, Experimental Mathematics, Volume 25, 2016 - Issue 3.
C. K. Caldwell, The Prime Glossary, minimal prime
Richard N. Smith, List of all known terms
Top PRPs, Search for 8*13^n+183
Top PRPs, Search for (73*17^n-9)/16
Top PRPs, Search for (106*23^n-7)/11
Wikipedia, Minimal prime (recreational mathematics)
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Richard N. Smith, Jul 13 2019
STATUS
approved