[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326607
G.f.: Sum_{n>=0} (2*n+1) * x^n * (1 - x^n)^n.
1
1, 3, 2, 7, -1, 11, -3, 15, -19, 40, -34, 23, -6, 27, -76, 141, -139, 35, 61, 39, -270, 358, -208, 47, -35, 106, -298, 739, -874, 59, 725, 63, -1415, 1332, -526, 596, -617, 75, -664, 2185, -2069, 83, 1519, 87, -4696, 5740, -988, 95, -3571, 204, 3236, 4863, -8995, 107, 1891, 7701, -11578, 6784, -1594, 119, -941
OFFSET
0,2
COMMENTS
Compare the g.f. to the series: Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)) = Product_{n>=1} (1 - x^(2*n))^3.
Compare the g.f. to the series: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
LINKS
FORMULA
G.f.: Sum_{n>=0} (2*n+1) * x^n * (1 - x^n)^n.
G.f.: Sum_{n>=0} (-1)^n * (2*n+1 + x^(n+1)) * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 2*x^2 + 7*x^3 - x^4 + 11*x^5 - 3*x^6 + 15*x^7 - 19*x^8 + 40*x^9 - 34*x^10 + 23*x^11 - 6*x^12 + 27*x^13 - 76*x^14 + 141*x^15 + ...
where A(x) is equal to the series given by
A(x) = 1 + 3*x*(1-x) + 5*x^2*(1-x^2)^2 + 7*x^3*(1-x^3)^3 + 9*x^4*(1-x^4)^4 + 11*x^5*(1-x^5)^5 + 13*x^6*(1-x^6)^6 + 15*x^7*(1-x^7)^7 + ...
Also,
A(x) = (1 + x)/(1 - x)^2 - (3 + x^2)*x^2/(1 - x^2)^3 + (5 + x^3)*x^6/(1 - x^3)^4 - (7 + x^4)*x^12/(1 - x^4)^5 + (9 + x^5)*x^20/(1 - x^5)^6 - (11 + x^6)*x^30/(1 - x^6)^7 + (13 + x^7)*x^42/(1 - x^7)^8 + ...
PROG
(PARI) /* By definition */
{a(n) = my(A = sum(m=0, n, (2*m + 1) * x^m * (1 - x^m + x*O(x^n))^m)); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) /* Accelerated series */
{a(n) = my(A = sum(m=0, sqrtint(n+1), (-1)^m * (2*m + 1 + x^(m+1))* x^(m*(m+1)) / (1 - x^(m+1) + x*O(x^n))^(m+2) )); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A010760 A085594 A085587 * A071189 A137822 A300845
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 08 2019
STATUS
approved