OFFSET
1,4
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
EXAMPLE
The directed acyclic graph whose unique root is 153 (illustrated below), spans the following seven numbers [1, 5, 17, 25, 51, 75, 153], as A032742(153) = 51, A302042(153) = 75, A032742(51) = 17, A302042(51) = 25, A032742(75) = 25, A302042(75) = 15, A032742(25) = A302042(25) = 5, and A032742(17) = A302042(17) = A032742(5) = A302042(5) = 1. The length of longest path(s) from 153 to 1 is 4 (there are actually two longest paths: 153 -> 51 -> 25 -> 5 -> 1 and 153 -> 75 -> 25 -> 5 -> 1), thus a(153) = 4.
.
153
/ \
/ \
51 75
/ \ / \
/ 17 \
\ | /
\ 1 /
\ /
\ /
25
|
5
|
1
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
v078898 = ordinal_transform(vector(up_to, n, A020639(n)));
A078898(n) = v078898[n];
A302042(n) = if((1==n)||isprime(n), 1, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p), d -= 1)); (k*p));
\\ Slightly faster:
memo302042 = Map();
A302042(n) = if((1==n)||isprime(n), 1, my(v); if(mapisdefined(memo302042, n, &v), v, my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p), d -= 1)); v=(k*p); mapput(memo302042, n, v); (v)));
A326191list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = 1+max(v[A032742(n)], v[A302042(n)])); (v); };
v326191 = A326191list(up_to);
A326191(n) = v326191[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 23 2019
STATUS
approved