[go: up one dir, main page]

login
A325888
Number of colored set partitions of [n] where colors of the elements of subsets are in (weakly) increasing order and all colors of an initial interval of the color palette are used.
2
1, 1, 5, 41, 505, 8597, 191457, 5364837, 183744421, 7521913845, 361544182917, 20109571623693, 1278810836639233, 92032189911692253, 7430335604308535497, 667922294225164998677, 66407623510409091454229, 7260203111052685954056549, 868289612454444952122790277
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*
binomial(n-1, j-1)*binomial(k+j-1, j), j=1..n))
end:
a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..21);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k + j - 1, j], {j, 1, n}]];
a[n_] := Sum[Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}], {k, 0, n}];
a /@ Range[0, 21] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
Row sums of A321296.
Sequence in context: A143415 A056545 A362111 * A347951 A275787 A009755
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 07 2019
STATUS
approved