[go: up one dir, main page]

login
A325772
Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 3), for k = 0, 1, 2.
4
0, 1, 0, 0, 2, 1, 1, 4, 1, 1, 8, 3, 2, 13, 5, 5, 21, 9, 7, 34, 13, 11, 52, 23, 19, 77, 32, 27, 114, 51, 40, 163, 72, 61, 232, 106, 85, 325, 146, 120, 450, 210, 170, 614, 284, 232, 836, 395, 316, 1120, 529, 433, 1494, 717, 576, 1976, 946, 767, 2599, 1264
OFFSET
1,5
COMMENTS
Row n partitions A006128 into 3 parts, r(n,0) + r(n,1) + r(n,2) = p(n) = A006128(n). What is the limiting behavior of r(n,0)/p(n)?
LINKS
EXAMPLE
First 15 rows:
0 1 0
0 2 1
1 4 1
1 8 3
2 13 5
5 21 9
7 34 13
11 52 23
19 77 32
27 114 51
40 163 72
61 232 106
85 325 146
120 450 210
170 614 264
MATHEMATICA
f[n_] := Mod[Flatten[IntegerPartitions[n]], 3];
Table[Count[f[n], k], {n, 1, 40}, {k, 0, 1, 2}] (* A325772 array *)
Flatten[%] (* A325772 sequence *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Jun 05 2019
STATUS
approved