[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324640
Dirichlet inverse of the Doudna sequence, A005940.
4
1, -2, -3, 0, -5, 6, -9, 0, 2, 10, -15, 0, -25, 18, 3, 0, -11, -4, -21, 0, 19, 30, -45, 0, -24, 50, -60, 0, -125, -6, -81, 0, 77, 22, 57, 0, -55, 42, 87, 0, -77, -38, -105, 0, -78, 90, -135, 0, -40, 48, -81, 0, -245, 120, -75, 0, -217, 250, -375, 0, -625, 162, -150, 0, 233, -154, -39, 0, 205, -114, -99, 0, -91, 110, 174, 0, -5, -174, -189, 0
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = -Sum_{d|n, d<n} a(d) * A005940(n/d).
a(p) = -A005940(p) for all primes p.
PROG
(PARI)
up_to = 16384;
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
v324640 = DirInverse(vector(up_to, n, A005940(n)));
A324640(n) = v324640[n];
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 11 2019
STATUS
approved