# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a319369 Showing 1-1 of 1 %I A319369 #19 Mar 16 2024 17:23:32 %S A319369 1,3,28,430,9376,269675,9632960,411395268,20445999734,1159248404721, %T A319369 73846864163348,5221802726902476,405858598184643930, %U A319369 34392275731729465799,3155760058245300968416,311720334688779807141832,32980137195294216968253900,3720954854814866649904474180 %N A319369 Number of series-reduced rooted trees with n leaves of n colors. %C A319369 Not all of the n colors need to be used. %H A319369 Alois P. Heinz, Table of n, a(n) for n = 1..340 %H A319369 V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. %F A319369 a(n) ~ c * d^n * n^(n - 3/2), where d = 1/(2*log(2) - 1) = 2.588699449562089830805384431942090... and c = 0.2580000331300831455241033648... - _Vaclav Kotesovec_, Sep 18 2019, updated Mar 16 2024 %p A319369 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A319369 add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i))) %p A319369 end: %p A319369 A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)): %p A319369 a:= n-> A(n$2): %p A319369 seq(a(n), n=1..20); # _Alois P. Heinz_, Sep 18 2018 %t A319369 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]]; %t A319369 A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]]; %t A319369 a[n_] := A[n, n]; %t A319369 a /@ Range[1, 20] (* _Jean-François Alcover_, Sep 24 2019, after _Alois P. Heinz_ *) %o A319369 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A319369 a(n)={my(v=[n]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v[n]} %Y A319369 Main diagonal of A319254. %Y A319369 Cf. A000311 (1 leaf of each color), A316651. %K A319369 nonn %O A319369 1,2 %A A319369 _Andrew Howroyd_, Sep 17 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE