[go: up one dir, main page]

login
A318890
Filter sequence combining the prime signature of n (A046523) with the prime signature of its conjugated prime factorization (A278221).
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 10, 15, 16, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 14, 33, 34, 35, 36, 37, 38, 39, 40, 41, 18, 42, 43, 44, 45, 18, 46, 47, 48, 22, 31, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 39, 63, 64, 65, 66, 18, 67, 20, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 53, 36, 80, 81, 82, 83, 84, 85, 26, 86, 87, 88, 89, 90, 91, 39
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A286454.
For all i, j: a(i) = a(j) => A318891(i) = A318891(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A318890aux(n) = [A046523(n), A278221(n)];
v318890 = rgs_transform(vector(up_to, n, A318890aux(n)));
A318890(n) = v318890[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 16 2018
STATUS
approved