[go: up one dir, main page]

login
A318834
a(n) = Product_{d|n, d<n} A019565(phi(d)), where phi is the Euler totient function A000010.
7
1, 2, 2, 4, 2, 12, 2, 12, 6, 20, 2, 108, 2, 60, 30, 60, 2, 540, 2, 300, 90, 84, 2, 2700, 10, 140, 90, 2700, 2, 6300, 2, 420, 126, 44, 150, 121500, 2, 132, 210, 10500, 2, 283500, 2, 5292, 3150, 660, 2, 132300, 30, 5500, 66, 14700, 2, 267300, 210, 472500, 198, 1540, 2, 4630500, 2, 4620, 47250, 4620, 350, 873180, 2, 1452, 990
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{d|n, d<n} A019565(A000010(d)).
A048675(a(n)) = A051953(n).
PROG
(PARI)
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
A318834(n) = { my(m=1); fordiv(n, d, if(d < n, m *= A019565(eulerphi(d)))); m; };
CROSSREFS
Cf. A000010, A019565, A318835 (rgs-transform).
Cf. also A293214, A293231, A300834.
Sequence in context: A317942 A296071 A319342 * A353564 A067228 A356543
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 04 2018
STATUS
approved