[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303986
Triangle of derivatives of the Niven polynomials evaluated at 0.
2
1, 1, -2, 1, -6, 12, 1, -12, 60, -120, 1, -20, 180, -840, 1680, 1, -30, 420, -3360, 15120, -30240, 1, -42, 840, -10080, 75600, -332640, 665280, 1, -56, 1512, -25200, 277200, -1995840, 8648640, -17297280, 1, -72, 2520, -55440, 831600, -8648640, 60540480, -259459200, 518918400, 1, -90, 3960, -110880, 2162160, -30270240, 302702400, -2075673600, 8821612800, -17643225600, 1, -110, 5940, -205920, 5045040, -90810720, 1210809600, -11762150400, 79394515200, -335221286400, 670442572800
OFFSET
0,3
COMMENTS
The Niven potentials N(n, x) = (1/n!)*x^n*(1 - x)^n = Sum_{k=0..n} (-1)^k * x^(n+k)/((n-k)!*k!), with (n-k)!*k! = A098361(n, k), are used to prove the irrationality of Pi^2 (hence Pi). See the Niven and Havil references.
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k) *x^k are R(n, x) = y_n(-2*x), with the Bessel polynomials of Krall and Frink y_n(x) with coefficients given in A001498. There the references are given. - Wolfdieter Lang, May 12 2018
REFERENCES
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
LINKS
Muniru A Asiru, Rows n = 0..50
FORMULA
T(n, k) = (d/dx)^(n+k) N(n, x) |_{x=0} =: N^{(n+k)}(n, 0), with N(n, x) = (1/n!)*x^n*(1 - x)^n, for n >= 0, k = 0..n.
N^{(n+k)}(n, 1) = (-1)^(n+k)*T(n, k), which has for even n the unsigned rows, and for odd n the unsigned row entries with negative signs.
T(n, k) = (-1)^k*binomial(n, n-k)*((n+k)!/n!).
T(n, k) = (-1)^k*A113025(n,k) with A113025(n,k) = (n+k)!/(k!*(n-k)!) = abs(A113216(n,k)). - M. F. Hasler, May 09 2018
T(n, k) = (-1)^k*Pochhammer(n+1, k)*binomial(n, k). - Peter Luschny, May 11 2018
Recurrence: from the one of the row polynomials R(n, x) = y_n(-2*x): R(n, x) = -2*(2*n-1)*x*R(n-1, x) + R(n-2, x), with R(-1, x) = 1 = R(0, x) = 1, n >= 1 (see A001498), this becomes, for n >= 0, k = 0..n:
T(n, k) = 0 for n < k, T(n, -1) = 0, T(0, 0) = 1 = T(1, 0) and otherwise
T(n, k) = -2*(2*n-1)*T(n-1, k-1) + T(n-2, k). - Wolfdieter Lang, May 12 2018
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 1 -2
2: 1 -6 12
3: 1 -12 60 -120
4: 1 -20 180 -840 1680
5: 1 -30 420 -3360 15120 -30240
6: 1 -42 840 -10080 75600 -332640 66528
7: 1 -56 1512 -25200 277200 -1995840 8648640 -17297280
8: 1 -72 2520 -55440 831600 -8648640 60540480 -259459200 518918400
...
MAPLE
T := (n, k) -> (-1)^k*pochhammer(n+1, k)*binomial(n, k):
seq(print(seq(T(n, k), k=0..n)), n=0..9); # Peter Luschny, May 11 2018
PROG
(PARI) T(n, k)=(-1)^k*binomial(n, n-k)*binomial(n+k, n)*k! \\ M. F. Hasler, May 09 2018
(GAP) Flat(List([0..10], n->List([0..n], k->(-1)^k*Binomial(n, n-k)*Factorial(n+k)/Factorial(n)))); # Muniru A Asiru, May 15 2018
CROSSREFS
Row sums are A002119.
Sequence in context: A106192 A113025 A113216 * A342589 A325635 A375753
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, May 07 2018
STATUS
approved