[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113216
Triangle of polynomials P(n,x) of degree n related to Pi (see comment) and derived from Padé approximation to exp(x).
1
1, 1, 2, 1, -6, -12, 1, 12, -60, -120, 1, -20, -180, 840, 1680, 1, 30, -420, -3360, 15120, 30240, 1, -42, -840, 10080, 75600, -332640, -665280, 1, 56, -1512, -25200, 277200, 1995840, -8648640, -17297280, 1, -72, -2520, 55440, 831600, -8648640, -60540480, 259459200, 518918400, 1, 90, -3960, -110880
OFFSET
0,3
COMMENTS
P(n,x) is a sequence of polynomials of degree n with integer coefficients, having exactly n real roots, such that r(n) the smallest root (in absolute value) converges quickly to Pi/2. e.g. the appropriate root for P(5,x) is r(5)=1.5707963(4026....) . To see the rapidity of convergence it is relevant noting that (r(n)-Pi/2)(2n)! -->0 as n grows.
FORMULA
P(0, x) = 1, P(1, x) = x+2, P(n, x) = (4*n-2)*P(n-1, x)-x^2*P(n-2, x).
P(n, x) = Sum_{0<=i<=n} (-1)^floor(i/2)*(2n-i)!/i!/(n-i)!*x^i.
EXAMPLE
P(5,x) = x^5 + 30*x^4 - 420*x^3 - 3360*x^2 + 15120*x + 30240.
Triangle begins:
1;
1,2;
1,-6,-12;
1,12,-60,-120;
1,-20,-180,840,1680;
1,30,-420,-3360,15120,30240;
1,-42,-840,10080,75600,-332640,-665280;
...
PROG
(PARI) P(n, x)=if(n<2, if(n%2, x+2, 1), (4*n-2)*P(n-1, x)-x^2*P(n-2, x))
(PARI) P(n, x)=sum(i=0, n, x^i*(-1)^floor(i/2)/(n-i)!/i!*(2*n-i)!)
CROSSREFS
Cf. A113025 (unsigned variant), A048854, A059344, A119274.
Sequence in context: A049949 A106192 A113025 * A303986 A342589 A325635
KEYWORD
sign,tabl
AUTHOR
Benoit Cloitre, Jan 07 2006
STATUS
approved