[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303870
Number of noncrossing partitions up to rotation and reflection composed of n blocks of size 4.
3
1, 1, 1, 3, 8, 34, 169, 1019, 6710, 47104, 342772, 2566209, 19621256, 152669854, 1205358482, 9636786366, 77890590994, 635628049370, 5231328157060, 43382605871299, 362225044991368, 3043083681629249, 25708398651274529, 218296978274674435, 1862280135781609982
OFFSET
0,4
LINKS
FORMULA
a(n) ~ 2^(8*n - 5/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jun 01 2022
MATHEMATICA
u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
a[n_] := T[n, 4];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after _Andrew Howroyd and A303929 *)
CROSSREFS
Column k=4 of A303929.
Cf. A054362.
Sequence in context: A117722 A231856 A024419 * A186517 A094448 A063805
KEYWORD
nonn
AUTHOR
Andrew Howroyd, May 01 2018
STATUS
approved