OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
a(n) ~ 2^(8*n - 5/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jun 01 2022
MATHEMATICA
u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
a[n_] := T[n, 4];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after _Andrew Howroyd and A303929 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, May 01 2018
STATUS
approved