[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054362
Number of unlabeled 4-gonal cacti having n polygons.
5
1, 1, 1, 3, 11, 52, 307, 1936, 13207, 93496, 683988, 5127163, 39230669, 305299420, 2410624122, 19273255184, 155780437711, 1271253542364, 10462650241996, 86765190816362, 724450039738076, 6086167189623746, 51416796881915019
OFFSET
0,4
COMMENTS
Also, the number of noncrossing partitions up to rotation composed of n blocks of size 4. - Andrew Howroyd, Apr 30 2018
LINKS
Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56.
FORMULA
a(n) = ((Sum_{d|n} phi(n/d)*binomial(4*d, d)) + (Sum_{d|gcd(n-1, 4)} phi(d)*binomial(4*n/d, (n-1)/d)))/(4*n) - binomial(4*n, n)/(3*n+1) for n > 0. - Andrew Howroyd, Apr 30 2018
MAPLE
with(combinat): with(numtheory): m := 4: for p from 2 to 28 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od: # Zerinvary Lajos, Dec 01 2006
MATHEMATICA
a[0] = 1;
a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[4#, #]&] + DivisorSum[GCD[n - 1, 4], EulerPhi[#] Binomial[4n/#, (n-1)/#]&])/(4n) - Binomial[4n, n]/ (3n + 1);
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)
PROG
(PARI) a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(4*d, d)) + sumdiv(gcd(n-1, 4), d, eulerphi(d)*binomial(4*n/d, (n-1)/d)))/(4*n) - binomial(4*n, n)/(3*n+1))} \\ Andrew Howroyd, Apr 30 2018
CROSSREFS
Column k=4 of A303694.
Sequence in context: A351067 A058799 A357833 * A129833 A321585 A368283
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Zerinvary Lajos, Dec 01 2006
STATUS
approved