[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309399
Number of lucky numbers l between powers of 2, 2^n < l <= 2^(n+1).
2
0, 1, 1, 3, 3, 6, 12, 21, 38, 71, 123, 234, 427, 791, 1477, 2774, 5222, 9849, 18659, 35412, 67410, 128644, 245959, 471166, 904186, 1738238, 3346542, 6452030, 12455921, 24076458, 46591766, 90258683, 175029533
OFFSET
0,4
EXAMPLE
a(0) = 0 because there are no lucky numbers between 1 (2^0) and 2 (2^1).
a(3) = 3 because there are 3 lucky numbers (9, 13, 15) between 8 (2^3) and 16 (2^4).
PROG
(SageMath)
def lucky(n):
L=list(range(1, n+1, 2)); j=1
while L[j] <= len(L)-1:
L=[L[i] for i in range(len(L)) if (i+1)%L[j]!=0]
j+=1
return(L)
A000959=lucky(1048576)
def lucky_range(a, b):
lucky = []
for l in A000959:
if l >= b:
return lucky
if l>=a: lucky.append(l)
[ len(lucky_range((2^n)+1, 2^(n+1))) for n in range(19)]
CROSSREFS
Sequence in context: A112434 A050067 A377396 * A046875 A056494 A168076
KEYWORD
nonn,more
AUTHOR
Hauke Löffler, Jul 28 2019
EXTENSIONS
a(19)-a(30) from Giovanni Resta, May 10 2020
a(31)-a(32) from Kevin P. Thompson, Nov 22 2021
STATUS
approved