[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309355
Even numbers k such that k! is divisible by k*(k+1)/2.
1
8, 14, 20, 24, 26, 32, 34, 38, 44, 48, 50, 54, 56, 62, 64, 68, 74, 76, 80, 84, 86, 90, 92, 94, 98, 104, 110, 114, 116, 118, 120, 122, 124, 128, 132, 134, 140, 142, 144, 146, 152, 154, 158, 160, 164, 168, 170, 174, 176, 182, 184, 186, 188, 194, 200, 202, 204, 206
OFFSET
1,1
COMMENTS
Even terms in A060462.
And A071904 are the successors of a(n).
Even numbers that are not a prime - 1. That is, even numbers not in A006093. - Terry D. Grant, Oct 31 2020
REFERENCES
J. D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 98, pp. 29; 145-146, MAA Washington DC, 1996.
Die WURZEL - Zeitschrift für Mathematik, 53. Jahrgang, Juli 2019, S. 171, WURZEL-Aufgabe 2019-36 von Gerhard Dietel, Regensburg.
FORMULA
a(n) = A071904(n) - 1.
EXAMPLE
8! = 40320 is divisible by 8*9/2 = 36.
14! is divisible by 14*15/2.
MATHEMATICA
Complement[Table[2 n, {n, 1, 103}], Table[EulerPhi[Prime[n]], {n, 1, 103}]] (* Terry D. Grant, Oct 31 2020 *)
PROG
(PARI) forcomposite(c=4, 10^3, if(c%2==1, print1(c-1, ", "))); \\ Joerg Arndt, Jul 25 2019
(Magma) [k: k in [2..250]|IsEven(k) and Factorial(k) mod Binomial(k+1, 2) eq 0]; // Marius A. Burtea, Jul 28 2019
(Python)
from sympy import primepi
def A309355(n):
if n == 1: return 8
m, k = n, primepi(n) + n + (n>>1)
while m != k:
m, k = k, primepi(k) + n + (k>>1)
return m-1 # Chai Wah Wu, Aug 02 2024
CROSSREFS
Essentially the same as A186193.
Cf. A006093.
Sequence in context: A025044 A264722 A125163 * A374223 A063288 A136798
KEYWORD
nonn
AUTHOR
Gerhard Palme, Jul 25 2019
STATUS
approved