[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278385
T(n,k)=Number of nXk 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly three mistakes.
8
0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 40, 74, 40, 0, 1, 267, 1220, 1220, 267, 1, 8, 1350, 12910, 23640, 12910, 1350, 8, 36, 5936, 100807, 368421, 368421, 100807, 5936, 36, 120, 23565, 652343, 4703562, 8632118, 4703562, 652343, 23565, 120, 330, 84912, 3750182
OFFSET
1,8
COMMENTS
Table starts
...0......0........0...........0..............0................1
...0......0........3..........40............267.............1350
...0......3.......74........1220..........12910...........100807
...0.....40.....1220.......23640.........368421..........4703562
...0....267....12910......368421........8632118........179716850
...1...1350...100807.....4703562......179716850.......6204309386
...8...5936...652343....50473056.....3325788157.....198563803019
..36..23565..3750182...474255829....54735436424....5851197688577
.120..84912.19784428..4047341159...813247916326..157794170262819
.330.278422.96786947.32112086692.11132424779200.3912513274701995
LINKS
FORMULA
Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 15]
k=3: [polynomial of degree 31]
k=4: [polynomial of degree 63]
k=5: [polynomial of degree 127]
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .0..0..0..0
..0..1..0..0. .0..1..1..1. .1..0..0..0. .1..1..1..1. .0..1..0..0
..1..0..0..1. .1..1..0..0. .1..0..1..0. .1..1..0..1. .1..1..1..0
..1..0..1..1. .0..0..1..0. .1..1..1..0. .0..1..1..1. .1..1..0..1
CROSSREFS
Column 1 is A000580(n+1).
Sequence in context: A305541 A280810 A283386 * A245626 A307233 A233320
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 20 2016
STATUS
approved