[go: up one dir, main page]

login
A304968
Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.
4
1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
OFFSET
0,2
LINKS
FORMULA
Binomial transform of b(1) = 1, b(n) = A134958(n) otherwise.
EXAMPLE
The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
PROG
(PARI) \\ here b(n) is A134958 with b(1)=1.
b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 22 2018
STATUS
approved