[go: up one dir, main page]

login
A304648
Number of different periodic multisets that fit within some normal multiset of weight n.
1
0, 1, 3, 7, 13, 25, 44, 78, 136, 242, 422, 747, 1314, 2326, 4121, 7338, 13052, 23288, 41568, 74329, 133011, 238338, 427278, 766652, 1376258, 2472012, 4441916, 7984990, 14358424, 25826779, 46465956, 83616962, 150497816, 270917035, 487753034, 878244512
OFFSET
1,3
COMMENTS
A multiset is normal if it spans an initial interval of positive integers. It is periodic if its multiplicities have a common divisor greater than 1.
LINKS
FORMULA
From Andrew Howroyd, Feb 04 2021: (Start)
a(n) = A027941(n) - A303976(n).
G.f.: Sum_{d>=2} -mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)).
(End)
EXAMPLE
The a(5) = 13 periodic multisets:
(11), (22), (33), (44),
(111), (222), (333),
(1111), (1122), (1133), (2222), (2233),
(11111).
MATHEMATICA
allnorm[n_Integer]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n], GCD@@Length/@Split[#]>1&]], {n, 10}]
PROG
(PARI) seq(n)=Vec(sum(d=2, n, -moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x), -n) \\ Andrew Howroyd, Feb 04 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 15 2018
EXTENSIONS
a(12)-a(13) from Robert Price, Sep 15 2018
Terms a(14) and beyond from Andrew Howroyd, Feb 04 2021
STATUS
approved