[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293443
Multiplicative with a(p^e) = A019565(A193231(e)).
7
1, 2, 2, 6, 2, 4, 2, 3, 6, 4, 2, 12, 2, 4, 4, 10, 2, 12, 2, 12, 4, 4, 2, 6, 6, 4, 3, 12, 2, 8, 2, 5, 4, 4, 4, 36, 2, 4, 4, 6, 2, 8, 2, 12, 12, 4, 2, 20, 6, 12, 4, 12, 2, 6, 4, 6, 4, 4, 2, 24, 2, 4, 12, 15, 4, 8, 2, 12, 4, 8, 2, 18, 2, 4, 12, 12, 4, 8, 2, 20, 10, 4, 2, 24, 4, 4, 4, 6, 2, 24, 4, 12, 4, 4, 4, 10, 2, 12, 12, 36, 2, 8, 2, 6, 8
OFFSET
1,2
FORMULA
a(1) = 1; for n > 1, a(n) = A019565(A193231(A067029(n))) * a(A028234(n)).
For all n >= 1, A007814(a(n)) = A293439(n).
For all k in A270428, A007814(a(k)) = A001221(k).
PROG
(PARI)
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; \\ And this from Franklin T. Adams-Watters
vecproduct(v) = { my(m=1); for(i=1, #v, m *= v[i]); m; };
A293443(n) = vecproduct(apply(e -> A019565(A193231(e)), factorint(n)[, 2]));
(Scheme, with memoization-macro definec)
(definec (A293443 n) (if (= 1 n) n (* (A019565 (A193231 (A067029 n))) (A293443 (A028234 n)))))
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Oct 31 2017
STATUS
approved