[go: up one dir, main page]

login
A293372
Number of partitions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order and all eight letters occur at least once in the partition.
2
95503, 3641992, 80387608, 1322729896, 18385756520, 225257353792, 2541255024732, 26777904754008, 269047552566188, 2594409873644384, 24281765931659608, 221357827678662984, 1978440640155108276, 17375505823280757968, 150542570789825846856, 1288702165811231618744
OFFSET
8,1
LINKS
FORMULA
a(n) ~ c * 8^n, where c = 3.3565128773700137140303140039343582841894554205106317247... - Vaclav Kotesovec, Oct 11 2017
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
seq(a(n), n=8..30);
CROSSREFS
Column k=8 of A261719.
Sequence in context: A230734 A114660 A183967 * A250993 A235783 A235788
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 07 2017
STATUS
approved