[go: up one dir, main page]

login
A293374
Number of partitions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the partition.
2
8879558, 507478240, 16328012830, 386564408490, 7585143426265, 129920818441752, 2021599595359635, 29144953777135120, 396700415630121560, 5147755142273696760, 64343348623810658670, 779040642478793472040, 9192718895981030349425, 106097174229823135572590
OFFSET
10,1
LINKS
FORMULA
a(n) ~ c * 10^n, where c = 3.1513858636401513585013047835048959202713435... - Vaclav Kotesovec, Oct 11 2017
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):
seq(a(n), n=10..30);
CROSSREFS
Column k=10 of A261719.
Sequence in context: A233476 A078143 A216003 * A141645 A217655 A151933
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 07 2017
STATUS
approved