[go: up one dir, main page]

login
A292265
A multiplicative encoding (compressed) for the exponents of 2 obtained when using Shevelev's algorithm for computing A002326.
7
2, 3, 12, 6, 20, 180, 720, 5, 80, 25920, 20, 360, 43200, 25920, 6220800, 10, 240, 540, 671846400, 540, 57600, 2160, 540, 194400, 155520, 45, 5804752896000, 77760, 14400, 87071293440000, 348285173760000, 15, 960, 12538266255360000, 311040, 139968000, 120, 77760, 18662400, 1679616000, 23219011584000, 108330620446310400000, 60, 4665600, 360, 540, 180
OFFSET
0,1
COMMENTS
a(n) = A019565(v(1)) * A019565(v(2)) * ... * A019565(v(k)), where v(1) .. v(k) are 2-adic valuations (not all necessarily distinct) of the iterated values obtained when running Shevelev's algorithm for computing A002623. (See A179680 and A292239.)
LINKS
FORMULA
For all n >= 0, A048675(a(n)) = A002326(n).
PROG
(PARI)
A000265(n) = (n >> valuation(n, 2));
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A292265(n) = { my(x = n+n+1, z = A019565(valuation(1+x, 2)), m = A000265(1+x)); while(m!=1, z *= A019565(valuation(x+m, 2)); m = A000265(x+m)); z; };
(Scheme) (define (A292265 n) (let ((x (+ n n 1))) (let loop ((z (A019565 (A007814 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (* z (A019565 (A007814 (+ x m)))) m))))))
CROSSREFS
Cf. A000265, A002326, A007814, A019565, A179680, A292239 (a variant), A292266 (rgs-version of this filter).
Sequence in context: A220271 A088611 A361323 * A259416 A137765 A356946
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 02 2017
STATUS
approved