[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291845
Triangle, read by rows, where the g.f. of row n equals Product_{k=0..n-1} (1 + (2*k+1)*x + x^2) for n>0 with a single '1' in row 0.
4
1, 1, 1, 1, 1, 4, 5, 4, 1, 1, 9, 26, 33, 26, 9, 1, 1, 16, 90, 224, 283, 224, 90, 16, 1, 1, 25, 235, 1050, 2389, 2995, 2389, 1050, 235, 25, 1, 1, 36, 511, 3660, 14174, 30324, 37723, 30324, 14174, 3660, 511, 36, 1, 1, 49, 980, 10339, 62265, 218246, 446109, 551047, 446109, 218246, 62265, 10339, 980, 49, 1, 1, 64, 1716, 25088, 218330, 1162560, 3782064, 7460928, 9157923, 7460928, 3782064, 1162560, 218330, 25088, 1716, 64, 1, 1, 81, 2805, 54324, 646542, 4899258, 23763914, 72918576, 139775763, 170606547, 139775763, 72918576, 23763914, 4899258, 646542, 54324, 2805, 81, 1
OFFSET
0,6
COMMENTS
Row sums yield the odd double factorials A001147.
Central terms in rows form A291846.
Another diagonal forms A291847.
Antidiagonal sums yield A291848.
EXAMPLE
This irregular triangle begins:
1;
1, 1, 1;
1, 4, 5, 4, 1;
1, 9, 26, 33, 26, 9, 1;
1, 16, 90, 224, 283, 224, 90, 16, 1;
1, 25, 235, 1050, 2389, 2995, 2389, 1050, 235, 25, 1;
1, 36, 511, 3660, 14174, 30324, 37723, 30324, 14174, 3660, 511, 36, 1;
1, 49, 980, 10339, 62265, 218246, 446109, 551047, 446109, 218246, 62265, 10339, 980, 49, 1;
1, 64, 1716, 25088, 218330, 1162560, 3782064, 7460928, 9157923, 7460928, 3782064, 1162560, 218330, 25088, 1716, 64, 1;
1, 81, 2805, 54324, 646542, 4899258, 23763914, 72918576, 139775763, 170606547, 139775763, 72918576, 23763914, 4899258, 646542, 54324, 2805, 81, 1;
1, 100, 4345, 107700, 1681503, 17237880, 117496358, 529332200, 1548992621, 2899264620, 3521075919, 2899264620, 1548992621, 529332200, 117496358, 17237880, 1681503, 107700, 4345, 100, 1; ...
PROG
(PARI) {T(n, k)=polcoeff(prod(j=0, n-1, 1 + (2*j+1)*x + x^2), k)}
{for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. A291846, A291847, A291848, A201949, A001147 (row sums).
Sequence in context: A255698 A290558 A071992 * A322193 A174984 A092141
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Sep 03 2017
STATUS
approved