Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 03 2017 16:39:10
%S 1,1,1,1,1,4,5,4,1,1,9,26,33,26,9,1,1,16,90,224,283,224,90,16,1,1,25,
%T 235,1050,2389,2995,2389,1050,235,25,1,1,36,511,3660,14174,30324,
%U 37723,30324,14174,3660,511,36,1,1,49,980,10339,62265,218246,446109,551047,446109,218246,62265,10339,980,49,1,1,64,1716,25088,218330,1162560,3782064,7460928,9157923,7460928,3782064,1162560,218330,25088,1716,64,1,1,81,2805,54324,646542,4899258,23763914,72918576,139775763,170606547,139775763,72918576,23763914,4899258,646542,54324,2805,81,1
%N Triangle, read by rows, where the g.f. of row n equals Product_{k=0..n-1} (1 + (2*k+1)*x + x^2) for n>0 with a single '1' in row 0.
%C Row sums yield the odd double factorials A001147.
%C Central terms in rows form A291846.
%C Another diagonal forms A291847.
%C Antidiagonal sums yield A291848.
%H Paul D. Hanna, <a href="/A291845/b291845.txt">Table of n, a(n) for n = 0..1680 of rows 0..40 of this triangle in flattened form.</a>
%e This irregular triangle begins:
%e 1;
%e 1, 1, 1;
%e 1, 4, 5, 4, 1;
%e 1, 9, 26, 33, 26, 9, 1;
%e 1, 16, 90, 224, 283, 224, 90, 16, 1;
%e 1, 25, 235, 1050, 2389, 2995, 2389, 1050, 235, 25, 1;
%e 1, 36, 511, 3660, 14174, 30324, 37723, 30324, 14174, 3660, 511, 36, 1;
%e 1, 49, 980, 10339, 62265, 218246, 446109, 551047, 446109, 218246, 62265, 10339, 980, 49, 1;
%e 1, 64, 1716, 25088, 218330, 1162560, 3782064, 7460928, 9157923, 7460928, 3782064, 1162560, 218330, 25088, 1716, 64, 1;
%e 1, 81, 2805, 54324, 646542, 4899258, 23763914, 72918576, 139775763, 170606547, 139775763, 72918576, 23763914, 4899258, 646542, 54324, 2805, 81, 1;
%e 1, 100, 4345, 107700, 1681503, 17237880, 117496358, 529332200, 1548992621, 2899264620, 3521075919, 2899264620, 1548992621, 529332200, 117496358, 17237880, 1681503, 107700, 4345, 100, 1; ...
%o (PARI) {T(n, k)=polcoeff(prod(j=0, n-1, 1 + (2*j+1)*x + x^2), k)}
%o {for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))}
%Y Cf. A291846, A291847, A291848, A201949, A001147 (row sums).
%K nonn,tabf
%O 0,6
%A _Paul D. Hanna_, Sep 03 2017