[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298693
G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1), n)/(n+1) * x^n / A(x)^( n*(n+1) ).
1
1, 1, 3, 22, 294, 5911, 158293, 5251690, 206696194, 9387611937, 482745371458, 27717788095397, 1757818683339028, 122058148921357056, 9212494564360610855, 751138761646263512978, 65807775099574132000968, 6166278653572358495161057, 615421469545011786309942067, 65183859793912213778457542207, 7303117991652113167690085149033
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 22*x^3 + 294*x^4 + 5911*x^5 + 158293*x^6 + 5251690*x^7 + 206696194*x^8 + 9387611937*x^9 + 482745371458*x^10 + 27717788095397*x^11 + 1757818683339028*x^12 + 122058148921357056*x^13 + 9212494564360610855*x^14 + 751138761646263512978*x^15 + ...
such that
A(x) = 1 + C(2,1)/2*x/A(x)^2 + C(6,2)/3*x^2/A(x)^6 + C(12,3)/4*x^3/A(x)^12 + C(20,4)/5*x^4/A(x)^20 + C(30,5)/6*x^5/A(x)^30 + C(42,6)/7*x^6/A(x)^42 + C(56,7)/8*x^7/A(x)^56 + ...
more explicitly,
A(x) = 1 + x/A(x)^2 + 5*x^2/A(x)^6 + 55*x^3/A(x)^12 + 969*x^4/A(x)^20 + 23751*x^5/A(x)^30 + 749398*x^6/A(x)^42 + 28989675*x^7/A(x)^56 + ... + A135861(n)*x^n/A(x)^(n*(n+1)) + ...
MATHEMATICA
terms = 21; A[_] = 1; Do[A[x_] = 1 + Sum[Binomial[n*(n+1), n]/(n+1)*x^n/ A[x]^(n*(n+1)), {n, terms}] + O[x]^terms, {terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Feb 09 2018 *)
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = Vec(sum(m=0, #A, binomial(m*(m+1), m)/(m+1) * x^m/Ser(A)^(m*(m+1)) ))); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A247659 A244468 A325295 * A326430 A119390 A271848
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2018
STATUS
approved