[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298694
G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1), n)/(n+1) * x^n / A(x)^(n^2).
0
1, 1, 4, 32, 419, 8052, 207784, 6724274, 260396693, 11697865930, 596886780272, 34072732137625, 2151062784054901, 148819021611467291, 11198412956841549966, 910736443741061568539, 79616310026220269203631, 7446056807577515910468813, 741918566779386113373532994, 78467177619239380045368550016, 8779922184077661414128958823323
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 419*x^4 + 8052*x^5 + 207784*x^6 + 6724274*x^7 + 260396693*x^8 + 11697865930*x^9 + 596886780272*x^10 + 34072732137625*x^11 + 2151062784054901*x^12 + 148819021611467291*x^13 + 11198412956841549966*x^14 + 910736443741061568539*x^15 + ...
such that
A(x) = 1 + C(2,1)/2*x/A(x) + C(6,2)/3*x^2/A(x)^4 + C(12,3)/4*x^3/A(x)^9 + C(20,4)/5*x^4/A(x)^16 + C(30,5)/6*x^5/A(x)^25 + C(42,6)/7*x^6/A(x)^36 + C(56,7)/8*x^7/A(x)^49 + ...
more explicitly,
A(x) = 1 + x/A(x) + 5*x^2/A(x)^4 + 55*x^3/A(x)^9 + 969*x^4/A(x)^16 + 23751*x^5/A(x)^25 + 749398*x^6/A(x)^36 + 28989675*x^7/A(x)^49 + ... + A135861(n)*x^n/A(x)^(n^2) + ...
MATHEMATICA
terms = 21; A[_] = 1; Do[A[x_] = 1 + Sum[Binomial[n*(n+1), n]/(n+1)*x^n/ A[x]^(n^2), {n, terms}] + O[x]^terms, {terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Feb 09 2018 *)
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = Vec(sum(m=0, #A, binomial(m*(m+1), m)/(m+1) * x^m/Ser(A)^(m^2) ))); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2018
STATUS
approved