[go: up one dir, main page]

login
A298514
Decimal expansion of lim_ {n->oo} (s(0) + s(1) + ... + s(n) - (n + 1)*g), where g = (1 + sqrt (5))/2, s(n) = (s(n - 1) + 1)^(1/2), s(0) = 3.
3
1, 9, 2, 8, 3, 3, 8, 3, 4, 6, 0, 2, 9, 9, 9, 3, 6, 0, 4, 6, 6, 1, 2, 5, 7, 2, 2, 0, 8, 2, 0, 5, 2, 6, 6, 7, 0, 3, 0, 8, 4, 4, 5, 5, 9, 9, 4, 0, 1, 1, 1, 7, 7, 6, 2, 4, 3, 1, 4, 7, 1, 9, 3, 1, 7, 7, 3, 8, 0, 8, 7, 6, 5, 5, 3, 1, 0, 3, 7, 2, 0, 3, 7, 0, 3, 4
OFFSET
1,2
COMMENTS
(lim_ {n->oo} s(n)) = g = golden ratio, A001622. See A298512 for a guide to related sequences.
EXAMPLE
s(n) -> g = (1+sqrt(5))/2, as at A001622.
s(0) + s(1) + ... + s(n) - (n + 1)*g -> 1.928338346029993604661257220820526670...
MATHEMATICA
s[0] = 3; d = 1; p = 1/2; s[n_] := s[n] = (s[n - 1] + d)^p
N[Table[s[n], {n, 0, 30}]]
z = 200 ; g = GoldenRatio; s = N[-(z + 1)*g + Sum[s[n], {n, 0, z}], 150 ];
RealDigits[s, 10][[1]]; (* A298514 *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Feb 11 2018
STATUS
approved