[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296356
a(n) = A296354(n) - A296355(n).
4
0, 0, 5, 3, 21, 19, 23, 11, 65, 53, 59, 72, 74, 81, 70, 31, 169, 182, 166, 176, 183, 148, 202, 188, 210, 202, 180, 228, 218, 216, 185, 79, 441, 345, 411, 467, 433, 458, 416, 475, 449, 489, 436, 461, 516, 374, 509, 462, 538, 487, 537, 505, 522, 503, 577, 560
OFFSET
0,3
COMMENTS
This is the binary "early-birdness" of n (cf. A116700, A296364).
Theorem: a(n) > 0 for all n > 1.
Proof. The claim is true for 2 <= n <= 7, so assume n >= 8, and let u = 1... denote the binary expansion of n. Let L denote the list of all binary vectors whose concatenation gives A076478.
To show a(n)>0 it is enough to exhibit a pair of successive binary vectors b, c in L whose concatenation contains a copy of u that begins in b and is such that b appears in L before u does. There are three cases.
(i) Suppose n is even, say u = 1x0. Take c = x00, and let b be the vector preceding c in L, so that b = y11, say. Then bc = y11x00 contains u.
(ii) Suppose n = 2^k-1, u = 1^k. Take b = 01^(k-1), c = 10^(k-1), so that bc = 0 1^k 0^(k-1).
(iii) Otherwise, n is an odd number whose binary expansion contains a 0, say u = 1^k 0x1. Take c = 0x10^k, and let b be the vector preceding c in L, so that b = y1^k, say, and bc = y1^k 0x10^k.
In each case we need to verify that b does appear in L before u, but we leave this easy verification to the reader. QED
LINKS
CROSSREFS
KEYWORD
nonn,base,look
AUTHOR
N. J. A. Sloane, Dec 14 2017, corrected and extended Dec 17 2017
EXTENSIONS
More terms from Rémy Sigrist, Dec 19 2017
STATUS
approved