OFFSET
1,4
COMMENTS
The problem asks if a(n) is also equal to ceiling(cosec(Pi/n)) for n>3.
First differs from ceiling(cosec(Pi/n)) for n>3 at n=80143857 (Stadler, 2019; Velleman and Wagon, 2020). - Amiram Eldar, Nov 08 2020
REFERENCES
Daniel J. Velleman and Stan Wagon, Bicycle or Unicycle?, MAA Press, 2020, pp. 32 and 192-194.
LINKS
Jonathan D. Lee and Stan Wagon, Proposers, Problem 12006, The American Mathematical Monthly, Vol. 124, No. 10 (2017), p. 970.
Albert Stadler and others, A Suspicious Formula Involving Pi, solution to Problem 12006, The American Mathematical Monthly, Vol. 126, No. 5 (2019), pp. 475-476.
MATHEMATICA
a[n_] := Ceiling[n/Pi]; Array[a, 100] (* Amiram Eldar, Nov 08 2020 *)
PROG
(PARI) a(n)=n\Pi+1 \\ Charles R Greathouse IV, Mar 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 15 2017
STATUS
approved