[go: up one dir, main page]

login
A295875
Let p = A295895(n) = parity of the binary weight of A005940(1+n). If A005940(1+n) is a square or twice a square (in A028982) then a(n) = 1 - p, otherwise a(n) = p.
5
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0
OFFSET
0
FORMULA
a(n) = A295895(n) + A295896(n) (mod 2).
a(n) = A295894(n) + A000203(A005940(1+n)) mod 2.
a(n) = A295297(A005940(1+n)).
a(2n+1) = a(n).
EXAMPLE
The first six levels of the binary tree (compare also to the illustrations given at A005940, A295894 and A295895):
0
|
0
............../ \..............
0 0
....../ \...... ....../ \......
0 0 1 0
/ \ / \ / \ / \
/ \ / \ / \ / \
1 0 0 0 0 1 0 0
/ \ / \ / \ / \ / \ / \ / \ / \
1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0
PROG
(Scheme) (define (A295875 n) (A000035 (+ (A295895 n) (A295896 n))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 01 2017
STATUS
approved