[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295809
G.f. A(x) satisfies: A(x)^3 = 1+x + x*(A(x)^2 + A(x)^7).
2
1, 1, 2, 9, 44, 238, 1363, 8129, 49947, 313982, 2009804, 13054923, 85835763, 570162938, 3820449453, 25792692527, 175277931388, 1198017908942, 8230391249548, 56801549666858, 393622890736512, 2737841490099777, 19107124975145342, 133755761621788177, 938960164858527807, 6608463199584560132, 46621379983243723382, 329627663780846842009
OFFSET
0,3
COMMENTS
Compare to: G(x)^3 = 1+x + x*(G(x)^2 + G(x)^4) holds when G(x) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*x) is a g.f. of the Motzkin numbers (A001006).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 1 + Series_Reversion( x/(1 + 2*x + 5*x^2 + 6*x^3 + 4*x^4 + x^5) ).
(2) F(A(x)) = x such that F(x) = -(1-x)/(1 - x + x^2 - x^4 + x^5).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 44*x^4 + 238*x^5 + 1363*x^6 + 8129*x^7 + 49947*x^8 + 313982*x^9 + 2009804*x^10 + 13054923*x^11 + 85835763*x^12 +...
such that A(x)^3 = 1+x + x*(A(x)^2 + A(x)^7).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 40*x^3 + 204*x^4 + 1125*x^5 + 6536*x^6 + 39390*x^7 + 243966*x^8 + 1543350*x^9 + 9929589*x^10 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 110*x^4 + 600*x^5 + 3459*x^6 + 20728*x^7 + 127824*x^8 + 805852*x^9 + 5170270*x^10 +...
A(x)^7 = 1 + 7*x + 35*x^2 + 182*x^3 + 1015*x^4 + 5936*x^5 + 35931*x^6 + 223238*x^7 + 1415526*x^8 + 9123737*x^9 + 59601227*x^10 +...
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = ((1+x) + x*A^2 + x*A^7 +x*O(x^n))^(1/3) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1+x); A = 1 + serreverse( x/(1 + 2*x + 5*x^2 + 6*x^3 + 4*x^4 + x^5 +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2017
STATUS
approved