[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214460
Number of 4 X 2*n+1 nonconsecutive chess tableaux.
4
1, 1, 1, 1, 2, 9, 44, 233, 1472, 10610, 82828, 688511, 6042580, 55523953, 530498426, 5242548633, 53361716373, 557495995958, 5961086843092, 65077096683358, 723862991146939, 8189257485453446, 94087399914391254, 1096331953010025684, 12941148147430923798
OFFSET
0,5
COMMENTS
A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..70 from Alois P. Heinz)
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
Wikipedia, Young tableau
FORMULA
a(n) ~ c * 16^n / n^(15/2), where c = 5.347555... - Vaclav Kotesovec, Dec 05 2017
EXAMPLE
a(4) = 2:
[1, 4, 7, 12, 15, 20, 23, 28, 31] [1, 4, 7, 10, 13, 16, 19, 22, 25]
[2, 5, 10, 13, 18, 21, 26, 29, 34] [2, 5, 8, 11, 14, 17, 28, 31, 34]
[3, 8, 11, 16, 19, 24, 27, 32, 35] [3, 6, 9, 20, 23, 26, 29, 32, 35]
[6, 9, 14, 17, 22, 25, 30, 33, 36] [12, 15, 18, 21, 24, 27, 30, 33, 36].
MAPLE
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([(2*n+1)$4], 0):
seq(a(n), n=0..25);
MATHEMATICA
b[l_List, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Total[l]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]]]; a[n_] := b[{2n+1, 2n+1, 2n+1, 2n+1}, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017, translated from Maple *)
CROSSREFS
Bisection (odd part) of row n=4 of A214088.
Sequence in context: A364476 A339440 A026302 * A124889 A317134 A295809
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 18 2012
STATUS
approved